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Abstract

Poisson’s ratio, n, is a fundamental parameter characterizing the mechanical behavior of a material. Because the ratio of

the bulk to the shear modulus, B/G, becomes infinite when n ¼ 1=2, it is often assumed that the bulk modulus becomes

very large as a material approaches ‘‘incompressibility.’’ This is incorrect; experimental results for viscoelastic materials

show that changes in the bulk modulus are actually negligible as n approaches 1/2. An analysis is performed to clarify the

apparent conflict between the classic elastic equations and the experiments. At n ¼ 1=2, the bulk modulus is shown to

exhibit a singularity, but this is irrelevant to real materials.

Published by Elsevier Ltd.
Poisson’s ratio, n, defined as the ratio of the lateral contraction to the elongation, is of particular interest for
materials near the glass transition, since n may exhibit a time or frequency dependence. Mathematically, when
n ¼ 1=2 the ratio of the bulk to shear modulus B/G is infinite and the system is described as incompressible.
Experimentally, all materials are compressible (i.e., B is finite), and while the Poisson’s ratio can approach 1/2,
it never actually equals 1/2. In viscoelastic materials, when n is close to 1/2, G5B and the material is
commonly called ‘‘incompressible’’. Interestingly, as n! 1=2 the value of the B decreases: investigations
of polymers in the softening zone of their viscoelastic spectrum show this behavior without exception;
e.g., polymethyl methacrylate [1–3], polystyrene [2], polycarbonate [4], styrene-butadiene rubber [5], polyvinyl
acetate [6], vulcanized natural rubber [7], nitrile-butadiene rubber [8], polyetherimide [9], an aromatic
polyimide [10], and a polyurethane [11,12].

Fig. 1 shows representative data of the bulk modulus, shear modulus, and Poisson’s ratio for polystyrene
and polymethyl methacrylate [1]. The bulk and shear modulus were determined from longitudinal and shear
wave speeds at 1MHz, and Poisson’s ratio was calculated from these data. This is the usual method of
determining n, although there are other means, such as direct measurement of the lateral contraction
accompanying uniaxial straining [2]. Conducting wave speed measurements through the softening zone
presents special difficulties so most of the data are confined to glasses. The figure shows that as the polymers
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Fig. 1. Bulk and shear modulus, and Poisson’s ratio, for polystyrene and polymethyl methacrylate as a function of temperature,

determined from ultrasonic measurements at 1MHz. Data from Ref. [1].
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are heated, the bulk modulus drops by a factor of 2 or 3, the shear modulus decreases by orders of magnitude
approaching zero, and Poisson’s ratio approaches 1/2. This behavior is typical of viscoelastic materials.
A recent review describes measurement techniques and discusses the shortcomings of the available
experimental data [13].

Physically, as the temperature is increased through the glass transition, the distance between the molecules is
expected to increase. The resulting decrease in the bulk modulus may be attributed to the consequent decrease
in the slope of the interatomic potential. This increase in volume also increases the molecular mobility,
decreasing the resistance to shear. This leads to a paradox: as a glass is heated and softens, it becomes more
compressible as its Poisson’s ratio becomes closer to the value associated with ‘‘incompressibility’’.

Mathematically, because B/G becomes infinite when n ¼ 1=2, it is sometimes anticipated that the bulk
modulus becomes anomalously large as a material approaches ‘‘incompressibility.’’ For example, in a recent
article in this journal expressions were developed for the complex Poisson’s ratio and comparisons made to
experimental data for polymers [12]. The relevant equation (Eq. (21) in Ref. [12]) was justified for nearly

incompressible materials ‘‘because Bd-N as nd ! 1=2’’ (subscript d refers to storage components of the
dynamic elastic constants). This is at odds with the experiments, cited above, showing that Bd decreases as
nd ! 1=2. We demonstrate mathematically herein that for n close to 1/2, changes in the bulk modulus are
small, in agreement with the observations of real materials.

The behavior of the elastic constants as Poisson’s ratio approaches one-half can be deduced using the classic
equations of elasticity. The ratio of the shear to the bulk modulus is [14]

G

B
¼

3ð1� 2nÞ
2ð1þ nÞ

. (1)
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Hence G/B ¼ 0 when n ¼ 1=2. Differentiation gives

d

dn
G

B

� �
¼

1

B2
B
dG

dn
� G

dB

dn

� �
¼

d

dn
3ð1� 2nÞ
2ð1þ nÞ

� �
¼ �

9

2ð1þ nÞ2
, (2)

Eq. (2) indicates that the slope of G/B approaches �2 as n! 1=2. This result is obtained from the
fundamental relationships and involves no assumptions; thus, its validity is general. Rearranging Eq. (2) gives

dG

dn
�

G

B

dB

dn
¼ �

9B

2ð1þ nÞ2
. (3)

Fig. 1 shows the shear modulus of a viscoelastic material decreasing dramatically as Poisson’s ratio
approaches 1/2. Therefore, using the assumption that G-0 as n! 1=2 gives

lim
n!1=2

dG

dn

� �
¼ �2B, (4)

Eq. (3) can be evaluated in the limit as n! 1=2 to find
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dB
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G
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G
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, (5)

where we avoided the indeterminate form via substitution of Eq. (4) in the penultimate term of Eq. (5); the
result is

lim
n!1=2

dB

dn

� �
¼ 0. (6)

The important results are Eqs. (2), (4), and (6), but it must be remembered that while Eq. (2) is general,
Eqs. (4) and (6) assume G-0 as n! 1=2.

Such a situation (G-0 as n! 1=2) occurs, for example, in a simple liquid that cannot support a shear stress
at long times. However, for entangled polymers the dynamic G is not zero, although the shear modulus is three
orders of magnitude lower than its value in the glassy state. Under these circumstances Eq. (2) holds; however,
Eqs. (4) and (6) are only approximations, whose accuracy depends on the material under consideration.

The forgoing analysis clarifies the apparent conflict between classical elasticity and experiment. For a
viscoelastic material above the glass transition, G6¼0, and it follows from Eq. (1) that when n ¼ 1=2 and
G/B ¼ 0, then B ¼N. The common assumption follows that the bulk modulus becomes large as n! 1=2,
which is contrary to experimental results. However, Eq. (6) shows that this assumption is not true. In fact the
opposite is to be expected—B is invariant as this limit is approached from below, as demonstrated in Fig. 1,
which shows that the bulk modulus is nearly constant as n approaches 1/2. The contradiction is resolved by
recognizing that the bulk modulus must exhibit a singularity at n ¼ 1=2, a hypothetical condition not
applicable to any actual material. Thus for a viscoelastic material the bulk modulus will change negligibly as
incompressibility is approached. At n ¼ 1=2 the function jumps discontinuously to infinity, but since all
materials are compressible, the singularity is of no practical import. This interpretation is consistent with
experiments cited above.

The derivation presented herein will be compared in detail to experimental results in a future publication.
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